Maintenance of Species Boundaries Despite Ongoing Gene Flow in Ragworts
نویسندگان
چکیده
The role of hybridization between diversifying species has been the focus of a huge amount of recent evolutionary research. While gene flow can prevent speciation or initiate species collapse, it can also generate new hybrid species. Similarly, while adaptive divergence can be wiped out by gene flow, new adaptive variation can be introduced via introgression. The relative frequency of these outcomes, and indeed the frequency of hybridization and introgression in general are largely unknown. One group of closely-related species with several documented cases of hybridization is the Mediterranean ragwort (genus: Senecio) species-complex. Examples of both polyploid and homoploid hybrid speciation are known in the clade, although their evolutionary relationships and the general frequency of introgressive hybridization among them remain unknown. Using a whole genome gene-space dataset comprising eight Senecio species we fully resolve the phylogeny of these species for the first time despite phylogenetic incongruence across the genome. Using a D-statistic approach, we demonstrate previously unknown cases of introgressive hybridization between multiple pairs of taxa across the species tree. This is an important step in establishing these species as a study system for diversification with gene flow, and suggests that introgressive hybridization may be a widespread and important process in plant evolution.
منابع مشابه
Genome-wide admixture and ecological niche modelling reveal the maintenance of species boundaries despite long history of interspecific gene flow
The maintenance of species boundaries despite interspecific gene flow has been a continuous source of interest in evolutionary biology. Many hybridizing species have porous genomes with regions impermeable to introgression, conferring reproductive barriers between species. We used ecological niche modelling to study the glacial and postglacial recolonization patterns between the widely hybridiz...
متن کاملDynamics of drift, gene flow, and selection during speciation in Silene.
The mechanics of speciation with gene flow are still unclear. Disparity among genes in population differentiation (F(ST)) between diverging species is often interpreted as evidence for semipermeable species boundaries, with selection preventing "key" genes from introgressing despite ongoing gene flow. However, F(ST) can remain high before it reaches equilibrium between the lineage sorting of sp...
متن کاملMaintenance of strong morphological differentiation despite ongoing natural hybridization between sympatric species of Lomatia (Proteaceae).
BACKGROUND AND AIMS When species cohesion is maintained despite ongoing natural hybridization, many questions are raised about the evolutionary processes operating in the species complex. This study examined the extensive natural hybridization between the Australian native shrubs Lomatia myricoides and L. silaifolia (Proteaceae). These species exhibit striking differences in morphology and ecol...
متن کاملGenomic Divergence during Speciation Driven by Adaptation to Altitude
Even though Darwin's "On the Origin of Species" implied selection being the main driver of species formation, the role of natural selection in speciation remains poorly understood. In particular, it remains unclear how selection at a few genes can lead to genomewide divergence and the formation of distinct species. We used a particularly attractive clear-cut case of recent plant ecological spec...
متن کاملAssessing reproductive isolation in highly diverse communities of the lichen-forming fungal genus peltigera.
The lichen-forming fungal genus Peltigera includes a number of species that are extremely widespread, both geographically and ecologically. However, morphological variability has lead to doubts about the distinctness of some species, and it has been suggested that hybridization is common in nature. We examined species boundaries by looking for evidence of hybridization and gene flow among seven...
متن کامل